• Skip to primary navigation
  • Skip to main content
College of Agriculture & Life Sciences
Department of Biochemistry and Biophysics
  • Degrees and Programs
    • Undergraduate
      • B.S. Biochemistry
      • B.S. Genetics
      • Biochemistry and Genetics Undergraduate Minors
      • Departmental Honors Program in Biochemistry
      • Departmental Honors Program in Genetics
      • BICH/GENE 491 Research
      • Overrides, Force Requests, and Prerequisites
      • Undergraduate Biochemistry & Genetics Society (BGS)
      • REU Program
      • Undergraduate Academic Advising
    • Graduate
      • Masters in Biochemistry
      • Ph.D. Biochemistry and Molecular Biophysics
      • Meetings and the Graduate Committees
      • Graduate Curriculum and Roadmap
      • After I Graduate
      • Biochemistry Graduate Association (BGA)
      • Graduate Advising
    • Student Life
  • Admissions and Aid
    • Undergraduate Student Admissions
    • Graduate Application Information
    • Scholarships and Financial Aid
      • Undergraduate Scholarships and Financial Aid
      • Graduate Funding
  • Research
    • Research Active Faculty
    • Collaborative Research Resources
    • Postdoctoral Research
  • Get Connected
    • Department News
    • Department Calendar
    • Department Climate Committee
    • Giving to Biochemistry and Biophysics
  • About
    • Academic Professional Faculty
    • Faculty
    • News and Media
    • Department Leadership
    • Department History
    • Employment Opportunities
    • Department Directory
    • Contact Us
  • Seminars
  • Stockroom
Search

← Return to the Department Directory | Return to All Research Active Faculty

Wehman, Ann

Ann Wehman

Assistant Professor
Focus Area:  Developmental genetics, Molecular cell biology, Membrane Trafficking, Extracellular Vesicles, Phagocytosis, Intracellular Clearance
Office:  
BICH 332
Email:  
[email protected]
Phone:  
979-314-8274
Ann Wehman's Website

Education

Undergraduate Education
B.S. Biology, Massachusetts Institute of Technology, MA (1999)
Graduate Education
Ph.D. Genetics, University of California, San Francisco (2006)
Postdoc. Developmental Genetics, New York University Medical Center (2006-2012)

Areas of Expertise

  • Developmental genetics
  • Molecular cell biology
  • C. elegans
  • Membrane Trafficking
  • Extracellular Vesicles
  • Phagocytosis
  • Intracellular Clearance

Professional Summary

Membrane Dynamics

Throughout life, cells communicate to coordinate the organism’s response to different stimuli. Cells release extracellular vesicles that carry signals to alter development or disease response. Released vesicles can also seal the cell membrane after damage. However, extracellular vesicles and other cellular debris need to be cleared from the environment and degraded intracellularly for normal physiology and to avoid an autoimmune response. The goal of our research is to discover how vesicles bud from the surface of cells, identify which signals extracellular vesicles send in animals, and determine how cells take up and process extracellular vesicles and other cellular debris. Defining how vesicles form is an essential first step to designing strategies to induce or suppress their formation and thereby determine their functional roles. This research could lead to new strategies to monitor or influence disease severity from cancer to inflammation and beyond.

Katharina Beer et al., PNAS 2018

Extracellular Vesicles (EV)

We are using the power of C. elegans genetics to identify additional proteins that regulate EV budding. We revealed that conserved regulators of viral budding also have a role in EV budding in C. elegans, including the membrane-sculpting complex known as ESCRT. Our studies are building a pathway of proteins that regulate TAT-5 localization and activity and thereby modulate EV release, which are likely to be co-opted by viruses. The proteins we identify may be used to alter EV production in other systems, which could impact the availability of non-invasive biomarkers and have the potential to influence viral spread or disease state.

Studying the mechanisms of EV production has provided us with techniques to induce or prevent their formation. This allows us to test which signaling pathways require EVs for signaling to occur, as well as define other functional roles for EVs. We are studying how changing EV production or uptake affects conserved developmental and immune signaling pathways in C. elegans. Thus, our research aims to define the diverse functional roles of EVs, which are likely to be similar in humans.

Clearance by Phagocytosis

Tissues contain cell fragments and dying cells in addition to healthy cells. For example, cells release a remnant of the intercellular bridge after cell division as a 1 µm EV. Cells need to clear these debris from their environment by phagocytosis. Furthermore, the immune system needs to degrade cell debris in phagolysosomes to avoid generating an autoimmune response. We use elegans to study the mechanisms of EV and cell corpse uptake by phagocytosis and the steps of phagolysosomal clearance.

Gholamreza Fazeli et al., Cell Reports 2018

C. elegans embryonic cells take up mitotic midbody remnants released during cell division in addition to dying cells such as the meiotic polar body. These phagosomes mature similar to mammalian phagosomes and gradually acidify and degrade their cargo. Thus, we can use C. elegans to study the conserved mechanisms of EV signaling, the pathways regulating EV uptake, and use time-lapse imaging to determine the ultimate fate of engulfed cargos in a developing animal.

Lipid asymmetry also regulates this dynamic process and we are interested in the signaling roles of lipids as well as proteins and metabolites. Analyzing defects in EV uptake complements our studies on EV budding and will allow us to elucidate the interplay of lipids and lipid regulators during dynamic remodeling of the membrane. Studying the fate of EVs also provides important insights into the functional roles of EV, which are likely to be conserved in humans. Furthermore, understanding these mechanisms will help to identify key modulators of the immune response, which can be disrupted during pathogen infection or autoimmune disease.

A member of
Texas A&M AgriLife

Texas A&M AgriLife Extension Service | Texas A&M AgriLife Research | Texas A&M Forest Service | Texas A&M Veterinary Medical Diagnostic Lab | College of Agriculture & Life Sciences

Department Quick Links

  • About
  • AgriLife Intranet
  • Degrees and Programs
  • Employment Opportunities
  • Contact Us
300 Olsen Blvd. College Station, Tx 77843-2128
(979) 845-5032
Department of Biochemistry and Biophysics

© 2025 Texas A&M University. All rights reserved.

  • Compact with Texans
  • Privacy and Security
  • Accessibility Policy
  • State Link Policy
  • Statewide Search
  • Veterans Benefits
  • Military Families
  • Risk, Fraud & Misconduct Hotline
  • Texas Homeland Security
  • Texas Veterans Portal
  • Equal Opportunity
  • Open Records/Public Information