• Skip to primary navigation
  • Skip to main content
College of Agriculture & Life Sciences
Department of Biochemistry and Biophysics
  • Degrees and Programs
    • Undergraduate
      • B.S. Biochemistry
      • B.S. Genetics
      • Biochemistry and Genetics Undergraduate Minors
      • Departmental Honors Program in Biochemistry
      • Departmental Honors Program in Genetics
      • BICH/GENE 491 Research
      • Overrides, Force Requests, and Prerequisites
      • Undergraduate Biochemistry & Genetics Society (BGS)
      • REU Program
      • Undergraduate Academic Advising
    • Graduate
      • Ph.D. Biochemistry and Molecular Biophysics
      • Meetings and the Graduate Committees
      • Graduate Curriculum and Roadmap
      • After I Graduate
      • Biochemistry Graduate Association (BGA)
      • Graduate Advising
    • Student Life
  • Admissions and Aid
    • Undergraduate Student Admissions
    • Graduate Application Information
    • Scholarships and Financial Aid
      • Undergraduate Scholarships and Financial Aid
      • Graduate Funding
  • Research
    • Research Active Faculty
    • Collaborative Research Resources
    • Postdoctoral Research
  • Get Connected
    • Department News
    • Department Calendar
    • Department Climate Committee
    • Giving to Biochemistry and Biophysics
  • About
    • Academic Professional Faculty
    • Faculty
    • News and Media
    • Department Leadership
    • Department History
    • Employment Opportunities
    • Department Directory
    • Contact Us
  • Seminars
  • Stockroom
Search

← Return to the Department Directory | Return to All Research Active Faculty

Devarenne, Tim

Tim Devarenne

Associate Professor, Biochemistry and Biophysics
Focus Area:  Algal hydrocarbons, Botryococcus braunii, plant pathogen interactions, programmed cell death, protein kinase signaling
Office:  
NMR N218A
Email:  
[email protected]
Phone:  
979-314-8288
Tim Devarenne's Website

Education

Undergraduate Education
B.S. 1991
Graduate Education
M.S. 1993
Ph.D. 2000
Postdoc. 2001-2006

Areas of Expertise

  • Algal hydrocarbons
  • Botryococcus braunii
  • Plant pathogen interactions
  • Programmed cell death
  • Protein kinase signaling

Professional Summary

The Devarenne lab focuses on identifying the genes and enzymes involved in hydrocarbon biosynthesis in the green microalga Botryococcus braunii and analyzing how plants control programmed cell death to control resistance to bacterial pathogens.

Algal hydrocarbon biosynthesis

A confocal microscopy image of a B. braunii colony showing chloroplast localization from chlorophyll autofluorescence (red) and stained with Nile red (green) to visualize the liquid hydrocarbons.

A confocal microscopy image of a B. braunii colony showing chloroplast localization from chlorophyll autofluorescence (red) and stained with Nile red (green) to visualize the liquid hydrocarbons.

Botryococcus braunii is a colony-forming green microalga that is well known for producing large quantities of liquid hydrocarbons, which can be converted into petroleum-equivalent combustion engine fuels. Thus, B. braunii hydrocarbons are a potential renewable source of transportation fuels. Interestingly, B. braunii hydrocarbons have been shown to be a major constituent of currently used petroleum deposits. We are studying the genes involved in the biosynthesis of the B. braunii liquid hydrocarbons from three different chemical races of the alga. Each race produces a different molecular type of hydrocarbon. Our studies include using transcriptomic and genomic data to identify hydrocarbon biosynthesis genes, cloning these genes, and functionally characterizing the enzymes encoded by these genes.

Control of plant programmed cell death

We study the biochemical and molecular mechanisms underlying the control of programmed cell death (PCD) in plants and how PCD is manipulated during plant-pathogen interactions. Specifically, we study the interaction between tomato and Pseudomonas syringae pv. tomato (Pst) the causative agent of bacterial speck disease. During the tomato resistance response to Pst, PCD is induced by the plant to limit the spread of the pathogen. Many of the genes that control plant PCD are serine/threonine (S/T) protein kinase. We are interested in studying a specific class of S/T protein kinases that control PCD in plants called AGC kinases and how they are regulated during the plant resistance response.

In tomato, the AGC kinase Adi3 is phosphorylated by Pdk1 to direct nuclear localization for control of programmed cell death (PCD) through cell death suppression (CDS). The presence of stresses such as P. syringae prevents Adi3 nuclear localization leading to PCD induction and resistance to the pathogen.

Publications

  • View publications on Google Scholar
A member of
Texas A&M AgriLife

Texas A&M AgriLife Extension Service | Texas A&M AgriLife Research | Texas A&M Forest Service | Texas A&M Veterinary Medical Diagnostic Lab | College of Agriculture & Life Sciences

Department Quick Links

  • About
  • AgriLife Intranet
  • Degrees and Programs
  • Employment Opportunities
  • Contact Us
300 Olsen Blvd. College Station, Tx 77843-2128
(979) 845-5032
Department of Biochemistry and Biophysics

© 2025 Texas A&M University. All rights reserved.

  • Compact with Texans
  • Privacy and Security
  • Accessibility Policy
  • State Link Policy
  • Statewide Search
  • Veterans Benefits
  • Military Families
  • Risk, Fraud & Misconduct Hotline
  • Texas Homeland Security
  • Texas Veterans Portal
  • Equal Opportunity
  • Open Records/Public Information